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A version of the Vector Blume-Emery-Griffiths model with three-dimensional spins was studied on a simple
cubic lattice by Monte Carlo simulations. We obtained the phase diagram, which reproduces, for a range of the
parameters of the model, the topology of the one observed for bulk mixtures of 3Heu 4He. The phase diagram
displays a superfluid, 4He-rich phase which undergoes a phase transition to a normal phase. This transition is
first or second order, depending on the region of the phase diagram examined. One of the main features of this
diagram is the existence of a tricritical point, which, for some values of the parameters of the model, decom-
poses into a critical endpoint and a double critical endpoint. These points were located with reasonable
precision. This study provides the basis for the subsequent study of dynamic properties of 3Heu 4He mixtures.
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I. INTRODUCTION

The nature of phase transitions in superfluid helium has
long been a topic of intense investigation. This is due espe-
cially to its unusual characteristics which permit transitions
to be studied with high resolution and with no complexities
arising from impurities and crystalline imperfections. One
remaining limitation was gravity, but with experiments con-
ducted in microgravity conditions, new data could be ob-
tained with unparalleled resolution �1�.

It has long been recognized that the XY model of magne-
tism should be in the same universality class of liquid 4He
and so suitable for the study of the superfluid phase transi-
tion �2�. Recently much interest has been given to the study
of dynamic properties of the XY model in the bulk and in
confined geometries. For instance, studying the transport
properties of the model near criticality, it is possible to relate
them to the thermal conductivity of superfluid 4He, which is
an experimentally accessible quantity �3,4�.

Another interesting class of systems are 3Heu 4He mix-
tures, where 3He atoms act as impurities which reduce the
superfluid transition temperature and drives the system to-
wards phase separation �5,6�. In 1971, Blume, Emery and
Griffiths �7� proposed a simple discrete spin model which
could mimic the basic features of the bulk phase diagram of
3Heu 4He mixtures, although it carried some unphysical
properties, as not considering the rotational symmetry of the
superfluid order parameter �the wave function of superfluid
helium�. The model was solved in the mean field approxima-
tion and for reasonable values of the parameters the model
qualitatively reproduced the experimental phase diagram, in-
cluding the tricritical point. Berker and Nelson �8�, and in-
dependently Cardy and Scalapino �9�, proposed a planar ro-

tator model to account for the behavior of films of
3Heu 4He mixtures, known as the vector Blume-Emery-
Griffiths �VBEG� model. The bulk phase diagram of the
model was investigated in two dimensions using the Migdal-
Kadanoff recursion relations and no tricritical point was
found for any values of the parameters. More recently, Ma-
ciolek et al. �10� studied the phase diagram of the planar-
rotator VBEG model in the bulk in three dimensions by the
molecular field approximation and Monte Carlo simulations;
however, the model does not possess intrinsic spin dynamics
�the spins are two dimensional� and is therefore not suitable
for future work regarding dynamic properties of the system.
Thus, our purpose here is to study the phase diagram of the
XY VBEG model �which presents three-dimensional spins
and, therefore, intrinsic spin dynamics� by Monte Carlo
simulations.

The model is defined in Sec. II. In Sec. III we give the
details of the simulational methods, and the results are pre-
sented in Sec. IV. The conclusions are given in the last sec-
tion.

II. THE MODEL

The system was simulated on a simple cubic lattice and
the hamiltonian is defined by an XY model embedded in a
lattice-gas model

H = − J�
�i,j�

�Si
xSj

x + Si
ySj

y� − K�
�i,j�

Si
2Sj

2 + ��
i

�Si�2, �1�

where S� represents a three-dimensional classical spin, the
first two sums are over nearest-neighbor pairs �i , j� and the
last one is over all sites i of the lattice. In this work, J=1.
There are two kinds of particles in the system—magnetic
�spin 1� and nonmagnetic �spin zero� particles. Magnetic par-
ticles represent 4He atoms and the spin orientation accounts
for the internal superfluid degrees of freedom. Nonmagnetic
particles represents 3He atoms. The first term in the Hamil-
tonian accounts for superfluidity, while the second term
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arises from a phenomenological modeling of the interaction
energy between pairs of helium particles of the same or dif-
ferent species. The parameter � is essentially the chemical
potential difference �3−�4 of 3He and 4He, respectively.
More details about the model can be found in Refs. �7,10�.

III. SIMULATIONAL METHODS

In order to explore the phase space of the model, we used
�i� lattice-gas moves combined with �ii� spin-reorientation
updates. The lattice-gas moves account for the phase separa-
tion in our model. The spin reorientation updates are related
to the long-range magnetic order, which corresponds to the
superfluid phase. We also applied a nonergodic version of the
Wolff algorithm �type iii update� �11,12� and �iv� overrelax-
ation updates of the spins at constant configurational energy
�13,14�. Each update method is performed in sweeps over the
whole lattice and each method �ii�, �iii�, or �iv� is preceded
by a lattice-gas sweep.

The Monte Carlo update algorithms �ii�-�iv�, each one
preceded by the update �i�, are all combined using a hybrid
Monte Carlo method �15� in order to reduce correlations be-
tween successive configurations in the simulation. After test-
ing different mixtures of the three different algorithms, we
found the best sampling was the simple 1 spin-reorientation
sweep; 1 Wolff cluster update; 1 overrelaxation sweep,
which defines what we will henceforth call a hybrid Monte
Carlo step �MCS�.

The lattice-gas update attempts to insert a magnetic par-
ticle �with a randomly selected spin orientation� at a site
where a nonmagnetic one is located or to replace the mag-
netic particle present at a site by a nonmagnetic one. The
acceptance probability is set by the local heat-bath rule

p��E� = 1/�exp��E/kBT� + 1� , �2�

where �E is the change in configurational energy of the pro-
posed move, kB is the Boltzmann constant �set to unity in our
work�, and T is the temperature of the system. The single
spin-reorientation update is done as in the Metropolis algo-
rithm, but the acceptance probability is also given by the
local heat-bath rule �Eq. �2��.

The Wolff update affects only the in-plane components of
the spin-1 particles �the z-component is unchanged� in order
to obey detailed balance. Analogously, the overrelaxation
method is performed with a rotation solely of the in-plane
component of the spins in order to keep the configurational
energy fixed. The Wolff and the overrelaxation updates are
both nonergodic but with the spin-reorientation updates and
the lattice gas moves included, the combined algorithm will
be ergodic.

For each lattice-gas or spin reorientation move, the new
spin direction is randomly selected from the even distribu-
tion on the unit sphere. The random number generator used
is the routine RAN2 �16�.

The system is characterized by two order parameters, the
in-plane magnetization per site �mxy� and the concentration
of 3He �nonmagnetic� particles �x3�

mxy =
1

L3�	�
i

L3

Si
x
2

+ 	�
i

L3

Si
y
2�1/2

, �3�

x3 =
1

L3�
i

L3

�1 − Si
2� , �4�

where L is the linear size of the simple cubic lattice studied.
We also computed other relevant thermodynamic quantities
as the specific heat cv, the in-plane component �xy of the
magnetic susceptibility and the concentration susceptibility
�conc

cv = L3 �E2� − �E�2

T2 , �5�

�xy = L3 �mxy
2 � − �mxy�2

T
, �6�

�conc = L3 �x3
2� − �x3�2

T
, �7�

where E is the energy per spin and T the temperature of the
system.

The global phase diagram has been obtained through the
location of the maximum of the specific heat and of the
in-plane magnetic susceptibility. We have considered finite
L�L�L lattices with periodic boundary conditions. To lo-
cate the maximum we performed preliminary simulations for
each value of the parameters used, with a temperature step
�T=0.1 and runs comprising up to 104 MCS after equilibra-
tion. Once we obtained the approximate location of the
maximum from this preliminary simulation, we performed
another one in the vicinity of the peak using �T=0.01 with
runs comprising now up to 4�104 MCS. This procedure has
been done considering just a particular finite lattice, namely,
L=10. However, we have also done a finite-size scaling
analysis �17,18� at some specific points in the vicinity of the
tricritical point by taking 10�L�30 for second-order tran-
sitions and 10�L�24 for first-order transitions and using
the single bidimensional histogram reweighting technique
�19,20�. In this case the histograms have been taken with 106

MCS �after equilibration� and from this approach we were
able to obtain a more precise value for the transition tem-
peratures.

The main feature of the phase diagram of 3Heu 4He mix-
tures is the presence of a tricritical point, and its location was
obtained taking into account that the upper critical dimension
for tricriticality is d�=3. Thus, mean-field theory applies and
the probability distribution for the magnetic order parameter
takes the Landau form

P�m� = P0m exp�− Am2 − Bm4 − Cm6� , �8�

where m= �mxy� is the modulus of the in-plane magnetization
per spin. The parameters P0, A, B, and C are constants, so
that C is always positive and A=B=0 at the tricritical point
�10�. The scaling function for �t and Tt are, respectively
�10�,
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�t�L� = �t +
	1

L
+

	2

L2 ,

Tt�L� = Tt +
t1

L
+

t2

L2 , �9�

where �t�L� and Tt�L� are the coordinates of the finite-size
tricritical points and 	1, 	2, t1, t2 are fit parameters used to
locate the tricritical point ��t ,Tt� at the thermodynamic limit.

IV. RESULTS

A. K=1.0

The behavior of the specific heat, in-plane magnetic sus-
ceptibility, in-plane magnetization and the concentration of
3He particles as a function of temperature is shown in Fig. 1
for K=1.0 and various values of the parameter �. All results
refer to L=10. The specific heat, Fig. 1�a�, and the in-plane
magnetic susceptibility, Fig. 1�b�, both display a sharp peak
which shifts towards lower temperatures as � increases �for
�=4.0, the peak in the in-plane susceptibility is very small
and its location is indicated by an arrow�. The in-plane mag-
netization �Fig. 1�c�� displays a pronounced jump for �
4,
which indicates the onset of a first-order phase transition.
This is also observed in the behavior of the concentration of
3He particles. Associating these maxima in �xy and cv to the
phase transitions, we are able to plot the phase diagram for
the model as in Fig. 2. For � below the tricritical point, the
system undergoes a second-order phase transition �the
lambda transition� from a superfluid 4He-rich phase to a nor-
mal phase as the temperature increases. For values of �
above the tricritical point, the second-order transition is pre-
empted by a first-order transition, separating the superfluid
4He-rich phase from the normal phase. The extension of the
first-order transition line for lower temperatures is quite dif-

ficult to be obtained from the simulations performed. The
concentration of 3He in the normal phase varies depending
on the region of the phase diagram. For ���t, the system
presents a 4He-rich, normal phase, but the concentration of
3He atoms gradually increases as the system approaches the
tricritical point, so that a 3He-rich, normal phase takes the
scene.

The corresponding phase diagram in the temperature-
concentration plane is also shown in Fig. 2. The phase dia-
gram obtained qualitatively reproduces the experimental one
for 3Heu 4He mixtures. The tricritical 3He concentration is,
however, small �x317% � when compared to the one ob-
tained experimentally �67%� �6�.

The tricritical point, as mentioned in the previous section,
was found by the study of the probability distribution for the
magnetic order parameter. The basic idea in obtaining the
tricritical point is to walk along the second-order transition
line, varying � and T, and to probe the magnetic order pa-
rameter distribution along the way until we find the point
where P�m� displays the appropriate shape, with A=B=0
�see Eq �8��. In practice, we set A=B=0 in the fitting func-
tion and used P0 and C as fitting parameters. The tricritical
point is achieved when we get a visually satisfactory fit with
the lowest possible value for the merit function �2. The error
is estimated by assessing the region where changing the val-
ues of the coordinates �t and Tt of the estimated tricritical

FIG. 1. Behavior of �a� specific heat, �b� in-plane magnetic sus-
ceptibility, �c� in-plane magnetization, and �d� concentration of 3He
particles as a function of temperature for various values of � for
K=1 and L=10. In �b� the arrow indicates the position of the first-
order peak for �=4.0. The error bars are of the same order as the
symbol sizes. The legend in �c� applies also to �d�.

FIG. 2. Phase diagram of the model �a� in the �-T and �b� in the
temperature-concentration �x3� planes for K=1 and L=10 �in �b� we
have chosen x3 versus T for an easier comparison with �a��. The
tricritical point �open triangle� is located at ��t ,Tt�
= �3.230�5� ,1.3257�9��. Open circles �dashed line� represent first-
order transitions and, full circles �full line�, second-order transi-
tions. The lines are only guides to the eyes. When not indicated, the
error bars are the same size as the symbols or smaller.
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point does not sensitively affect the obtained minimum �2.
The search for the tricritical point was facilitated by the

use of bidimensional histograms, which allowed us to re-
weight simultaneously in both � and T. From a single simu-
lation at a point close to the transition line we were able to
obtain several other points along this line. A new simulation
became necessary only when the re-weighting was no longer
reliable. Thus, for each lattice size L a pseudotricritical point
��t�L� ,Tt�L�� was found following the criteria described
above. Performing finite-size scaling analysis for �t�L� and
Tt�L� we were able to obtain the tricritical point for L→�.
The assumed Landau form describes rather accurately the
probability distribution P�m� as it can be seen in Fig. 3. The
finite-size scaling results for �t�L� and Tt�L� are shown in
Fig. 4. From this study we conclude that the tricritical point
is located at ��t ,Tt�= �3.1313�4� ,1.293�1��.

We also investigated the finite-size behavior of the in-
plane magnetic susceptibility at tricriticality �Fig. 5�. The
maximum of the susceptibility obtained at the pseudotricriti-
cal point as a function of the lattice size L agrees very well
with the predicted scaling function �10,21�

� = �0	 L

l0

/�	ln

L

l0

1/4

�10�

but the logarithmic correction is important. This is clearly
observed in Fig. 5�b�, where we see that multiplying �xy by
L−/� does not yield a straight horizontal line. A curve still
remains, which is reasonably fitted by a logarithmic function.
A better fit would be expected if enough larger lattice sizes
were used �here we only accessed the initial tail of the loga-
rithmic function�. In this analysis,  /�=2, the expected value
for the tricritical point.

A more precise picture of the phase diagram is shown in
Fig. 6, where some points in the vicinity of the tricritical
point are depicted for L→�. The points shown were ob-
tained using histogram reweighting and finite-size scaling
analysis. The scaling behavior for the temperature for each of
the transition points are displayed in Fig. 7, where we used
the expected values for the respective exponents for the first-
and second-order transition lines, which are the dimension of
the system �first-order� and �xy =0.669 �3� for the three-
dimensional XY model �second-order�.

From histogram reweighting we were able to obtain the
probability distribution of the magnetic order parameter mxy
at the transition temperature. This was also used to corrobo-
rate the order of the phase transition. The first-order transi-

FIG. 3. Probability distribution of the magnetic order parameter
for L=30 at ��t�30� ,Tt�30��= �3.2935�5� ,1.3014�2��. The solid line
is the least square fit to the data, according to Eq. �8�, with A=B
=0.

FIG. 4. Finite-size scaling for the parameters �a� �t and �b� Tt at
the tricritical point. The solid line is the least-square fit to the data
according to Eq. �9�.

FIG. 5. Finite-size scaling analysis for the maximum of the in-
plane magnetic susceptibility at tricriticality; �a� results for �xy /site;
�b� analysis for ��xy /site��L−/�. The solid line corresponds to the
least-square fit with the logarithmic correction, while the dashed
line is the fit without the logarithmic correction. When not shown,
error bars are smaller than the symbol sizes.
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tion is characterized by a bimodal probability distribution,
while a single-peaked distribution characterizes a second-
order transition �Fig. 8�. This analysis of P�m� was important
not only to characterize the order of the phase transition but
also to assess the accuracy of the histogram reweighting per-
formed.

B. K�1

We also studied the phase diagram for K=0 and K=−1,
using L=10, as shown in Fig. 9. The results obtained led us
to conclude that, in the range −1.0�K�1.0, the phase dia-
gram of the model satisfactorily reproduces the topology of
the phase diagram for 3Heu 4He mixtures. It is interesting to
observe that, for all values of K studied, as � decreases, the
critical temperature of the system tends to that of the 3D XY

model. This behavior is expected, since the smaller the value
of �, the greater the value of the chemical potential �4 for
4He relatively to �3, what tends to suppress the occurrence
of 3He �nonmagnetic� particles. It is also worth observing
that the reduction of the value of the parameter K induced a
noticeable change in the tricritical temperature and also in
the tricritical concentration of 3He particles, so that these
parameters at tricriticality could be brought to a better accor-
dance with the experimental values �see Table I�. The tem-
perature T on this table is shown as a ratio of T /TS, where TS
is the temperature of the superfluid transition for pure 4He
�used for the experimental ratio, given by T /TS=0.4 �10��,
which is equivalent to the critical temperature of the 3D XY
model �Tc

−1=0.64440�5� �3�, used for the theoretical ratios�.
The tricritical point for K=−1.0 and K=0 was estimated ex-
tending the first- and second-order transition lines close
enough one to each other. The approximate location was then
given by ��t ,Tt�= ���1+�2� /2 , �T1+T2� /2�, where the index
1 �2� refers to the terminal point obtained for the first
�second�-order line in each case. The estimated location for
the tricritical point for K=−1.0 is thus ��t ,Tt�
= �−3.6�1� ,0.74�4�� and, for K=0, ��t ,Tt�= �0.6�1� ,0.83�3��.

FIG. 6. Phase diagram in the vicinity of the tricritical point
�open triangle�. The points shown were obtained for L→�. The
open circles �dashed line� refer to first-order phase transitions and,
the full circles �full line�, to second-order phase transitions. The
lines are only guides to the eyes and the error bars are smaller than
the symbol sizes, except for the tricritical point.

FIG. 7. Finite-size scaling analysis for the transition tempera-
tures on the �a� first- and �b� second-order transition lines in the
vicinity of the tricritical point. The lines are the least-square fit to
the data. The error bars are smaller than the size of the symbols.

FIG. 8. Probability distribution for the in-plane magnetization
for the first ��� ,T�= �3.32,1.29145�, full line� and second-order
��� ,T�= �3.293,1.30190�, dashed line� transitions �L=24�.

FIG. 9. Phase diagram for L=10 and different values of the
parameter K. The open symbols �dashed lines� refer to first-order
phase transitions and full symbols �full lines�, to second-order tran-
sitions. The tricritical point for each value of K is indicated by an
open triangle. The second-order transition lines extend towards the
critical temperature of the three-dimensional XY model, when �
→−� �see text�. The lines are only guides to the eyes.
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C. K=1.3

The scenario, however, dramatically changes for K�1,
for instance K=1.3. The tricritical point disappears and now
the second-order line ends at a critical endpoint on the first-
order line, which extends itself until its extinction at a double
critical endpoint �22� �Fig. 10�. The approximate location of
the critical endpoint is ��CE,TCE�= �4.18�5� ,1.42�1��, which
can be easily obtained by extending the second-order line
very close to the first-order one. The location of the double
critical endpoint, however, is not so straightforward, but it
can be determined with good precision through the study of
the probability distribution associated with the order param-
eter. Note that similar phase boundary structures have been
predicted by mean field theory. They have been, however,
notoriously difficult to observe in simulations �23,24�. It is

known that each universality class is characterized by a set of
scaling functions, so that systems belonging to the same uni-
versality class present the same scaling functions �25,26�.
Thus, if we know a priori the universality class of the critical
point we want to locate, we can walk along the first-order
line and probe the probability distribution until we find the
point with the expected universal behavior. In fact, this is the
case for the critical point considered here. In the region of
the phase diagram where we have only normal fluid �see Fig.
10�, the order parameter is essentially the concentration of
3He �or 4He� particles and the system behaves as a three-
dimensional lattice gas, which is in the three-dimensional
Ising universality class. In this case, the corresponding prob-
ability distribution has been already computed through ex-
tensive Monte Carlo simulations �27�.

Due to the lack of symmetry between the phases involved
we were led to employ field-mixing theory �28,29� in order
to study the order parameter probability distribution. The
critical point in the T-� plane is controlled by two relevant
scaling fields � and 	, which are linear combinations of the
thermodynamic fields T and �

� = T − Tc + s�� − �c� ,

	 = � − �c + r�T − Tc� , �11�

where �c and Tc are the field values at the critical point, and
r and s control the degree of field mixing.

The conjugate scaling operators E and D are also linear
combinations of the nearest-neighbor energy E and the quad-
rupole term Q

E =
E − rQ

1 − rs
,

D =
Q − sE

1 − rs
, �12�

where E=��i,j��Si
xSj

x+Si
ySj

y� and Q=�iSi
2. According to finite-

size scaling �28� and renormalization group procedures �30�,
the probability distribution PL�E ,D� at criticality is given by

TABLE I. 3He concentration and temperature at tricriticality for
different values of K for the VBEG model. The values for K=1 are
the estimates for the thermodynamic limit. For K=0 and K=−1.0,
the results refer to L=10.

x3�%� T /TS

Experimental 67 0.4

K=1.0 18�2� 0.8332�7�
K=0.0 40�8� 0.53�2�

K=−1.0 35�8� 0.48�4�

FIG. 10. Phase diagram �a� in the �-T and �b� in the
concentration-temperature planes for L=10 and K=1.3. The open
circles �dashed line� refer to first-order transitions and, the full sym-
bols �full line�, to second-order transitions. The critical endpoint is
represented by a full square and, the double critical endpoint, by the
full diamond. The lines are only guides to the eyes. When not
indicated, the error bars are smaller than the symbol sizes.

FIG. 11. Universal probability distribution for the double critical
endpoint �K=1.3�.
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PL�E,D� � �E
+�D

+ P*��E
+	E,�D

+ 	D� , �13�

�E = aELd−yE,�D = aDLd−yD �14�

where �E�E
+=�D�D

+ =Ld and 	E=E− �E�c and 	D=D− �D�c.
The probability distribution P* is a universal function, char-
acteristic of a definite universality class. Moreover, PL�E ,D�,
given in Eq. �13�, is related to the joint probability distribu-
tion PL�E ,Q� through

PL�E,Q� =
1

1 − rs
PL�E,D� . �15�

Formal integration of PL�E ,D� over E yields PL�D�,
which is the desired distribution, since D is the conjugate
scaling operator of the corresponding scaling field 	. Choos-
ing the nonuniversal factor aD so that the distribution PL�D�
as a function of aDLD

y �D− �D�c� has unit variance, we obtain
the universal probability distribution PL

*, which depends only
on three parameters T, �, and s. Thus, by tuning T, �, and s,
with the aid of the histogram technique, we can collapse
PL

*�D�, for various lattice sizes, over the previously com-
puted universal distribution of the three-dimensional Ising
model. Performing simulations with 3–10�106 MCS for
lattices L�24, we now store a table of E and Q from which
we obtain the distribution PL�D�. We could then obtain the
values for the parameters T, �, and s for each lattice size L at
the critical point considered. The collapsed probability dis-
tributions are shown in Fig. 11 and the values of the param-
eters for each lattice size are shown in Table II.

The finite-size scaling analysis for the critical temperature
is shown in Fig. 12, where we used the appropriate expo-
nents �=0.629 and �=0.54 for the three-dimensional Ising
model �31�. The critical temperature at the thermodynamic
limit is Tc=1.5745�2�. The value for �c is given by
4.13899�4�.

V. CONCLUSIONS

The phase diagram for the XY version of the Vector
Blume-Emery-Griffiths model was studied by means of

Monte Carlo simulations. This model satisfactorily repro-
duces the topology of the phase diagram for 3Heu 4He mix-
tures for −1.0�K�1.0. The phase diagram displays a
second-order transition line isolated from a first-order transi-
tion line by a tricritical point. For � below the tricritical
point, the system exhibits a superfluid, 4He-rich phase which
undergoes a second-order transition to a 4He-rich, normal
phase. For values of � above the tricritical point, the super-
fluid 4He-rich phase undergoes a first-order transition to a
normal phase, whose concentration of 3He gradually in-
creases as the system moves away from the tricritical point.
For K�1, for instance, K=1.3, the phase diagram changes
substantially. The tricritical point disappears and the second-
order line ends at a critical endpoint on the first-order line,
which extends until a double critical endpoint, located with
good precision. It is worth noting that the results obtained for
the XY version of the VBEG model are qualitatively similar
to those obtained by Maciolek et al. �10� for the planar ro-
tator version, but not quantitavely. For instance, the tricritical
point obtained �K=1� for the planar rotator version by Monte
Carlo simulations is given by Tt /Ts=0.744, while we ob-
tained Tt /Ts=0.8332�7�. We also expect that, for different
values of K, a third type of phase diagram, displaying a triple
point �as predicted by mean field�, should also occur. The
results obtained will be useful for our subsequent work on
dynamic properties of 3Heu 4He mixtures.
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TABLE II. Parameters for the PL
*�D� distribution. The best esti-

mate for the location of the double critical endpoint is Tc

=1.5745�2� and �c=4.13899�4�.

L T � s

12 1.5759�1� 4.13883�1� −0.1�1�
14 1.5755�1� 4.13885�1� −0.1�1�
16 1.5752�1� 4.13889�1� −0.1�1�
18 1.5750�1� 4.13888�1� −0.1�1�
24 1.5747�1� 4.13899�1� −0.1�1�

FIG. 12. Finite-size scaling analysis for the double critical end-
point at the end of the first-order transition line �K=1.3�. The values
used for the exponents � and � are, respectively, 0.54 and 0.629, the
appropriate ones for the three-dimensional Ising model.
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